
Hardness of Mastermind

Giovanni Viglietta

Department of Computer Science, University of Pisa, Italy

Venice - June 5th, 2012

“Easy to learn. Easy to play. But not so easy to win.”

Mastermind commercial, 1981

Hardness of Mastermind

Mastermind is played on a board with colored pegs.
A codemaker chooses a secret sequence of colors,
and a codebreaker has to guess it in several attempts.

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

After each guess, the codemaker responds with some black
and white pegs.

Black pegs represent correct pegs in the codebreaker’s guess
that are also well-placed.
White pegs represent pegs in the codebreaker’s guess that are
correct but misplaced.
Black and white pegs do not mark the positions of the correct
pegs in the codebreaker’s guess, but only their amount.

Secret code:

Hardness of Mastermind

Mastermind in bank frauds

The relevance of Mastermind in real-life security issues was
pointed out in 2010 by Focardi and Luccio.
An insider of a bank who gains access to some switch is able
to issue several PIN verification API calls, eventually deducing
user PINs, digit by digit.
This kind of attack is performed exactly as an extended
Mastermind game played between the insider and the bank’s
computers.

Hardness of Mastermind

A feasible heuristic

A systematic study of Mastermind
was carried out by Chvátal, in a
1983 paper dedicated to Erdős on
his 70th birthday.

Chvátal suggested a simple divide-and-conquer strategy for
the codebreaker to guess the code in 2n dlog ce+ 4n +

⌈
c
n

⌉
attempts. Each guess can be computed in polynomial time.

This bound was subsequently lowered by a constant factor,
with an improvement on the same basic idea.

Hardness of Mastermind

Mastermind: a piece of cake?

Does Chvátal’s strategy trivialize the game?

Not really, as long as the number of attempts is critical.

The classic (4, 6)-Mastermind is solvable within 5 guesses,
while Chvátal’s algorithm guesses 18 times.

Playing perfectly is still hard.

Hardness of Mastermind

Mastermind: a piece of cake?

Does Chvátal’s strategy trivialize the game?

Not really, as long as the number of attempts is critical.

The classic (4, 6)-Mastermind is solvable within 5 guesses,
while Chvátal’s algorithm guesses 18 times.

Playing perfectly is still hard.

Hardness of Mastermind

Exhaustive searches

Another thread of heuristics was
started in 1976 by Knuth, who devised
a worst-case optimal (w.r.t. the
number of guesses) greedy strategy to
beat (4, 6)-Mastermind.

Every step of the strategy is a brute-force search among all
possible guesses and all possible responses of the codemaker.

The heuristic is based on choosing the guess that will
minimize the number of eligible solutions, in the worst case.

This is practical and optimal for (4, 6)-Mastermind, but still
infeasible and suboptimal in general.

Several other approaches were adopted, most notably genetic
algorithms, achieving different performance tradeoffs.

Hardness of Mastermind

Satisfiability

Mastermind Satisfiability Problem (MSP)

Input: (n, c ,Q), where Q is any sequence of guesses and
responses in (n, c)-Mastermind.
Output: YES if there exists a code that is compatible with all the
queries in Q, NO otherwise.

In 2005 Stuckman and Zhang proved that MSP is
NP-complete.

In 2009 Goodrich proved the same result for a variant of
Mastermind where the codemaker only responds with black
pegs (with an application to genetics).

Hardness of Mastermind

Satisfiability

Mastermind Satisfiability Problem (MSP)

Input: (n, c ,Q), where Q is any sequence of guesses and
responses in (n, c)-Mastermind.
Output: YES if there exists a code that is compatible with all the
queries in Q, NO otherwise.

In 2005 Stuckman and Zhang proved that MSP is
NP-complete.

In 2009 Goodrich proved the same result for a variant of
Mastermind where the codemaker only responds with black
pegs (with an application to genetics).

Hardness of Mastermind

Solution uniqueness and Restricted Mastermind

Problem (Stuckman–Zhang, 2005)

Can we detect MSP instances with a unique solution?

Inspired by Goodrich, we define two variants of MSP.

In MSP-BLACK the codemaker responds only with black pegs.

In MSP-WHITE the codemaker responds with (b + w) white
pegs whenever in MSP he would have responded (b,w). The
codebreaker has to guess the code up to reordering of the pegs.

c-MSP is always played with c colors, while n is still a
variable.

Similarly for c-MSP-BLACK and c-MSP-WHITE.

We will determine which of these restrictions are
#P-complete.

Hardness of Mastermind

Solution uniqueness and Restricted Mastermind

Problem (Stuckman–Zhang, 2005)

Can we detect MSP instances with a unique solution?

Inspired by Goodrich, we define two variants of MSP.

In MSP-BLACK the codemaker responds only with black pegs.

In MSP-WHITE the codemaker responds with (b + w) white
pegs whenever in MSP he would have responded (b,w). The
codebreaker has to guess the code up to reordering of the pegs.

c-MSP is always played with c colors, while n is still a
variable.

Similarly for c-MSP-BLACK and c-MSP-WHITE.

We will determine which of these restrictions are
#P-complete.

Hardness of Mastermind

Solution uniqueness and Restricted Mastermind

Problem (Stuckman–Zhang, 2005)

Can we detect MSP instances with a unique solution?

Inspired by Goodrich, we define two variants of MSP.

In MSP-BLACK the codemaker responds only with black pegs.

In MSP-WHITE the codemaker responds with (b + w) white
pegs whenever in MSP he would have responded (b,w). The
codebreaker has to guess the code up to reordering of the pegs.

c-MSP is always played with c colors, while n is still a
variable.

Similarly for c-MSP-BLACK and c-MSP-WHITE.

We will determine which of these restrictions are
#P-complete.

Hardness of Mastermind

Solution uniqueness and Restricted Mastermind

Problem (Stuckman–Zhang, 2005)

Can we detect MSP instances with a unique solution?

Inspired by Goodrich, we define two variants of MSP.

In MSP-BLACK the codemaker responds only with black pegs.

In MSP-WHITE the codemaker responds with (b + w) white
pegs whenever in MSP he would have responded (b,w). The
codebreaker has to guess the code up to reordering of the pegs.

c-MSP is always played with c colors, while n is still a
variable.

Similarly for c-MSP-BLACK and c-MSP-WHITE.

We will determine which of these restrictions are
#P-complete.

Hardness of Mastermind

Preliminary results

Observation

In (n, c)-Mastermind restricted to white pegs, the codebreaker can
guess the code after c − 1 attempts.

He tries all possible colors... Although this is suboptimal.

Observation

#c-MSP-WHITE ∈ FP.

There are only
(n+c−1

c−1

)
= Θ(nc−1) possible codes to check.

Observation

#(c − 1)-MSP 6pars #c-MSP.

Add the guess ccc · · · with response (0, 0).

This holds also for #c-MSP-BLACK and #c-MSP-WHITE.

Hardness of Mastermind

Hardness of Mastermind

Theorem

#1-IN-3-SAT 6pars


#MSP-WHITE

#2-MSP-BLACK

#2-MSP.

Hence all these variations are #P-complete.

Hardness of Mastermind

#1-IN-3-SAT 6pars #MSP-WHITE

Let ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ w) ∧ (y ∨ ¬z ∨ ¬w).

Colors: x , x̄ , y , ȳ , z , z̄ ,w , w̄ , ?.

Code length: 4.

Queries:

? ? ? ? with score (0)

x x x̄ x̄ with score (1)
y y ȳ ȳ with score (1)
z z z̄ z̄ with score (1)
www̄w̄ with score (1)

x ȳ z ? with score (1)
x̄ y w ? with score (1)
y z̄ w̄ ? with score (1)

Hardness of Mastermind

#1-IN-3-SAT 6pars #MSP-WHITE

Let ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ w) ∧ (y ∨ ¬z ∨ ¬w).

Colors: x , x̄ , y , ȳ , z , z̄ ,w , w̄ , ?.

Code length: 4.

Queries:

? ? ? ? with score (0)

x x x̄ x̄ with score (1)
y y ȳ ȳ with score (1)
z z z̄ z̄ with score (1)
www̄w̄ with score (1)

x ȳ z ? with score (1)
x̄ y w ? with score (1)
y z̄ w̄ ? with score (1)

Hardness of Mastermind

#1-IN-3-SAT 6pars #MSP-WHITE

Let ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ w) ∧ (y ∨ ¬z ∨ ¬w).

Colors: x , x̄ , y , ȳ , z , z̄ ,w , w̄ , ?.

Code length: 4.

Queries:

? ? ? ? with score (0)

x x x̄ x̄ with score (1)
y y ȳ ȳ with score (1)
z z z̄ z̄ with score (1)
www̄w̄ with score (1)

x ȳ z ? with score (1)
x̄ y w ? with score (1)
y z̄ w̄ ? with score (1)

Hardness of Mastermind

#1-IN-3-SAT 6pars #MSP-WHITE

Let ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ w) ∧ (y ∨ ¬z ∨ ¬w).

Colors: x , x̄ , y , ȳ , z , z̄ ,w , w̄ , ?.

Code length: 4.

Queries:

? ? ? ? with score (0)

x x x̄ x̄ with score (1)
y y ȳ ȳ with score (1)
z z z̄ z̄ with score (1)
www̄w̄ with score (1)

x ȳ z ? with score (1)
x̄ y w ? with score (1)
y z̄ w̄ ? with score (1)

Hardness of Mastermind

#1-IN-3-SAT 6pars #2-MSP-BLACK

Let ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ w) ∧ (y ∨ ¬z ∨ ¬w).
Colors: •, ◦.
Code length: 8.

Queries:

x x̄ y ȳ z z̄ w w̄ Score

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ (4)

x x̄ y ȳ z z̄ w w̄ Score

• • ◦ ◦ ◦ ◦ ◦ ◦ (4)
◦ ◦ • • ◦ ◦ ◦ ◦ (4)
◦ ◦ ◦ ◦ • • ◦ ◦ (4)
◦ ◦ ◦ ◦ ◦ ◦ • • (4)

x x̄ y ȳ z z̄ w w̄ Score

• ◦ ◦ • • ◦ ◦ ◦ (3)
◦ • • ◦ ◦ ◦ • ◦ (3)
◦ ◦ • ◦ ◦ • ◦ • (3)

Hardness of Mastermind

#1-IN-3-SAT 6pars #2-MSP-BLACK

Let ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ w) ∧ (y ∨ ¬z ∨ ¬w).
Colors: •, ◦.
Code length: 8.
Queries:

x x̄ y ȳ z z̄ w w̄ Score

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ (4)

x x̄ y ȳ z z̄ w w̄ Score

• • ◦ ◦ ◦ ◦ ◦ ◦ (4)
◦ ◦ • • ◦ ◦ ◦ ◦ (4)
◦ ◦ ◦ ◦ • • ◦ ◦ (4)
◦ ◦ ◦ ◦ ◦ ◦ • • (4)

x x̄ y ȳ z z̄ w w̄ Score

• ◦ ◦ • • ◦ ◦ ◦ (3)
◦ • • ◦ ◦ ◦ • ◦ (3)
◦ ◦ • ◦ ◦ • ◦ • (3)

Hardness of Mastermind

#1-IN-3-SAT 6pars #2-MSP-BLACK

Let ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ w) ∧ (y ∨ ¬z ∨ ¬w).
Colors: •, ◦.
Code length: 8.
Queries:

x x̄ y ȳ z z̄ w w̄ Score

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ (4)

x x̄ y ȳ z z̄ w w̄ Score

• • ◦ ◦ ◦ ◦ ◦ ◦ (4)
◦ ◦ • • ◦ ◦ ◦ ◦ (4)
◦ ◦ ◦ ◦ • • ◦ ◦ (4)
◦ ◦ ◦ ◦ ◦ ◦ • • (4)

x x̄ y ȳ z z̄ w w̄ Score

• ◦ ◦ • • ◦ ◦ ◦ (3)
◦ • • ◦ ◦ ◦ • ◦ (3)
◦ ◦ • ◦ ◦ • ◦ • (3)

Hardness of Mastermind

#1-IN-3-SAT 6pars #2-MSP-BLACK

Let ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ w) ∧ (y ∨ ¬z ∨ ¬w).
Colors: •, ◦.
Code length: 8.
Queries:

x x̄ y ȳ z z̄ w w̄ Score

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ (4)

x x̄ y ȳ z z̄ w w̄ Score

• • ◦ ◦ ◦ ◦ ◦ ◦ (4)
◦ ◦ • • ◦ ◦ ◦ ◦ (4)
◦ ◦ ◦ ◦ • • ◦ ◦ (4)
◦ ◦ ◦ ◦ ◦ ◦ • • (4)

x x̄ y ȳ z z̄ w w̄ Score

• ◦ ◦ • • ◦ ◦ ◦ (3)
◦ • • ◦ ◦ ◦ • ◦ (3)
◦ ◦ • ◦ ◦ • ◦ • (3)

Hardness of Mastermind

#1-IN-3-SAT 6pars #2-MSP

Let ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ w) ∧ (y ∨ ¬z ∨ ¬w).
Colors: •, ◦.
Code length: 8.
Queries:

x x̄ y ȳ z z̄ w w̄ Score

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ (4, 0)

x x̄ y ȳ z z̄ w w̄ Score

• • ◦ ◦ ◦ ◦ ◦ ◦ (4, 2)
◦ ◦ • • ◦ ◦ ◦ ◦ (4, 2)
◦ ◦ ◦ ◦ • • ◦ ◦ (4, 2)
◦ ◦ ◦ ◦ ◦ ◦ • • (4, 2)

x x̄ y ȳ z z̄ w w̄ Score

• ◦ ◦ • • ◦ ◦ ◦ (3, 4)
◦ • • ◦ ◦ ◦ • ◦ (3, 4)
◦ ◦ • ◦ ◦ • ◦ • (3, 4)

Hardness of Mastermind

Solutions

(x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ w) ∧ (y ∨ ¬z ∨ ¬w)

x y z w

T T T T
T T T F
T T F T
T T F F
T F F T
F T T T
F T T F
F F T F
F F F T
F F F F

x x y y z z w w

• ◦ • ◦ • ◦ • ◦
• ◦ • ◦ • ◦ ◦ •
• ◦ • ◦ ◦ • • ◦
• ◦ • ◦ ◦ • ◦ •
• ◦ ◦ • ◦ • • ◦
◦ • • ◦ • ◦ • ◦
◦ • • ◦ • ◦ ◦ •
◦ • ◦ • • ◦ ◦ •
◦ • ◦ • ◦ • • ◦
◦ • ◦ • ◦ • ◦ •

Hardness of Mastermind

Corollaries

In a real game of Mastermind we would know that our queries
are satisfiable. Can we use this information to compute the
size of the solution space?

In general, is it easier to compute the number of solutions,
knowing that they are at least k?

Let #MATCH be the problem of counting all the matchings
(perfect and imperfect) in a given graph.

Lemma (Valiant, 1979)

#MATCH is #P-complete under Turing reductions.

Then #SAT 6T #MATCH 6pars #MSP.
The graphs with fewer than k edges are solved by hand;
the others (which have at least k matchings)
are mapped to #MSP.

Corollary

#MSP restricted to instances with at least k solutions is #P-hard.

Hardness of Mastermind

Corollaries

In a real game of Mastermind we would know that our queries
are satisfiable. Can we use this information to compute the
size of the solution space?

In general, is it easier to compute the number of solutions,
knowing that they are at least k?

Let #MATCH be the problem of counting all the matchings
(perfect and imperfect) in a given graph.

Lemma (Valiant, 1979)

#MATCH is #P-complete under Turing reductions.

Then #SAT 6T #MATCH 6pars #MSP.
The graphs with fewer than k edges are solved by hand;
the others (which have at least k matchings)
are mapped to #MSP.

Corollary

#MSP restricted to instances with at least k solutions is #P-hard.

Hardness of Mastermind

Corollaries

In a real game of Mastermind we would know that our queries
are satisfiable. Can we use this information to compute the
size of the solution space?

In general, is it easier to compute the number of solutions,
knowing that they are at least k?

Let #MATCH be the problem of counting all the matchings
(perfect and imperfect) in a given graph.

Lemma (Valiant, 1979)

#MATCH is #P-complete under Turing reductions.

Then #SAT 6T #MATCH 6pars #MSP.
The graphs with fewer than k edges are solved by hand;
the others (which have at least k matchings)
are mapped to #MSP.

Corollary

#MSP restricted to instances with at least k solutions is #P-hard.

Hardness of Mastermind

Corollaries

Problem (Stuckman–Zhang, 2005)

Can we detect MSP instances with a unique solution?

If we are given k > 1 solutions, can we tell if there are more?

Corollary

No, it is NP-complete.

Not only solving Mastermind puzzles is hard, but designing
puzzles around a solution is hard.

What if we know that the solution is unique? Can we find it?

Corollary

No, it is NP-hard under randomized Turing reductions.

Hardness of Mastermind

Corollaries

Problem (Stuckman–Zhang, 2005)

Can we detect MSP instances with a unique solution?

If we are given k > 1 solutions, can we tell if there are more?

Corollary

No, it is NP-complete.

Not only solving Mastermind puzzles is hard, but designing
puzzles around a solution is hard.

What if we know that the solution is unique? Can we find it?

Corollary

No, it is NP-hard under randomized Turing reductions.

Hardness of Mastermind

Corollaries

Problem (Stuckman–Zhang, 2005)

Can we detect MSP instances with a unique solution?

If we are given k > 1 solutions, can we tell if there are more?

Corollary

No, it is NP-complete.

Not only solving Mastermind puzzles is hard, but designing
puzzles around a solution is hard.

What if we know that the solution is unique? Can we find it?

Corollary

No, it is NP-hard under randomized Turing reductions.

Hardness of Mastermind

Corollaries

Problem (Stuckman–Zhang, 2005)

Can we detect MSP instances with a unique solution?

If we are given k > 1 solutions, can we tell if there are more?

Corollary

No, it is NP-complete.

Not only solving Mastermind puzzles is hard, but designing
puzzles around a solution is hard.

What if we know that the solution is unique? Can we find it?

Corollary

No, it is NP-hard under randomized Turing reductions.

Hardness of Mastermind

Corollaries

Problem (Stuckman–Zhang, 2005)

Can we detect MSP instances with a unique solution?

If we are given k > 1 solutions, can we tell if there are more?

Corollary

No, it is NP-complete.

Not only solving Mastermind puzzles is hard, but designing
puzzles around a solution is hard.

What if we know that the solution is unique? Can we find it?

Corollary

No, it is NP-hard under randomized Turing reductions.

Hardness of Mastermind

Open problems

#c-MSP-WHITE ∈ FP when c is a constant.

k
√

n -MSP-WHITE is #P-complete for every k > 1.

Problem

What is the lowest order of growth of c(n) such that
#c(n)-MSP-WHITE is #P-complete?

Hardness of Mastermind

Open problems

Solving MSP is a sub-step of several heuristics.

But is it really necessary?

MASTERMIND

Input: (n, c ,Q, k).
Output: YES if the codebreaker has a strategy to guess the code
within k attempts, given the set of queries Q. NO otherwise.

MASTERMIND ∈ PSPACE, due to Chvátal’s strategy.

Problem

Is MASTERMIND PSPACE-complete?

Hardness of Mastermind

Open problems

Solving MSP is a sub-step of several heuristics.

But is it really necessary?

MASTERMIND

Input: (n, c ,Q, k).
Output: YES if the codebreaker has a strategy to guess the code
within k attempts, given the set of queries Q. NO otherwise.

MASTERMIND ∈ PSPACE, due to Chvátal’s strategy.

Problem

Is MASTERMIND PSPACE-complete?

Hardness of Mastermind

